PEMANFAATAN ARTIFICIAL NEURAL NETWORK DENGAN METODE HEBB RULE UNTUK PENGENALAN BAHASA ISYARAT INDONESIA STATIS

Dwi Setiawan, Achmad Zakki Falani

Abstract


Abstrak: Communication limitations are a social problem faced by persons with disabilities who are deaf and speech impaired. This problem is not only experienced by people who are deaf and speech impaired. Because it is less able to translate sign language this also becomes a problem for normal people in communicating with people who are deaf and speech impaired. Based on the problems outlined above, an analysis will be carried out for the introduction of static Indonesian sign language patterns. Where the data used is visual data in the form of pictures taken based on the visual form of the hand that refers to the Indonesian sign language type SIBI (Indonesian Sign System) using the artificial neural network method of hebb rule. Visual data in the form of images are obtained from capture results which are then collected and inputted through a system with the Python programming language as much as 72 training data which are then processed with several stages including preprocessing which has 3 stages namely grayscaling, edge detection, and thresholding. Furthermore, the data is processed at the segmentation stage and classification testing is performed on the test data using the hebb rule method which has a percentage of pattern recognition accuracy of 100% in the training data testing and an accuracy percentage of 80.37% in the test data obtained from the capture of 72 test data. Keywords : Hebb Rule, Artificial Neural Network, Grayscale, Edge Detection, Threshold, Ekstraksi, Bahasa Isyarat  Indonesia, SIBI.

References


DAFTAR PUSTAKA

Andono, P. N., Sutojo, T., & Muljono. (2017). PENGOLAHAN CITRA DIGITAL. Yogyakarta: ANDI (Anggota IKAPI).

Budi, A., Suma'inna, & Maulana, H. (2016). Pengenalan Citra Wajah Sebagai Identifier Menggunakan Metode Principal Component Analysis

(PCA). JURNAL TEKNIK INFORMATIKA VOL 9 NO. 2, 1-9.

Delsavonita, & Candra, F. (2018). SISTEM PENGENALAN POLA KARAKTER HURUF KOREA MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS DAN JARINGAN SYARAF TIRUAN - BACK PROPAGATION. Jom FTEKNIK Volume 5 Edisi 2 Juli s/d Desember 2018, 1-8.

Fadhilla, M., Saf, M. R., & Sahid, D. S. (2017). Pengenalan Kepribadian Seseorang Berdasarkan Pola Tulisa Tangan Menggunakan Jaringan Syaraf Tiruan. JNTETI, Vol 6, No.3, 1-9.

Faridh, H. M. (2013). Pengenalan Karakter Huruf Tulisan Tangan Menggunakan Metode Principle Component Analysis. 6.

Fathia, S. (2013). Dampak Reduksi Sample Menggunakan Principle Component Analysis (PCA) Pada Pelatihan Jaringan Syaraf Tiruan Terawasi (Studi Kasus : Pengenalan Angka Tulisan Tangan). 9.

Fatta, H. A. (2009). Rekayasa Sistem Pengenalan Wajah. Yogyakarta: C.V Andi Offset.

Hermawan, A. (2006). Jaringan Syaraf Tiruan.

Kong, X., Hu, C., & Duan, Z. (2017). Principal Component Analysis Network And Algorithms. Beijing: Science Press.

Muliono, R., & Lubis, J. H. (2018). Jaringan Syaraf Tiruan Pengenalan pola Huruf Dengan Jaringan Hebb. Jurnal Teknik Informatika Kaputama (JTIK) Vol 2, No. 1, 1-5.

Muliono, R., & Lubis, J. H. (2018). Jaringan Syaraf Tiruan Pengenalan Pola Huruf Dengan Jaringan Hebb. Jurnal Teknik Informatika Kaputama (JTIK) Vol. 2, No. 1, 1-5.

Mulyana, T. M. (2015). SEGMENTASI CITRA MENGGUNAKAN HEBB-RULE. JURNAL TEKNOLOGI INFORMASI, VOLUME 11, NOMOR 1, 1-9.

Algoritma Principal Component Analysis. 11, 11.

Tjolleng, A. (2017). Pengantar Pemrograman Matlab. Jakarta: PT. Elex Media Komputindo.




DOI: http://dx.doi.org/10.53567/spirit.v12i1.148

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal SPIRIT




 

Diindeks Oleh:



SPIRIT : Sarana Penunjang Informasi Terkini

Diterbitkan oleh Teknologi Informasi Institut Teknologi dan Bisnis Yadika Pasuruan
Alamat Redaksi: Jl. Bader No.9, Kwangsan, Kalirejo, Kec. Bangil, Pasuruan, Jawa Timur 67153
Telp/Fax: (0343) 742070 , Email : lppm@stmik-yadika.ac.id
Google Maps :  Klik Disini


 Creative Commons License
Karya ini dilisensikan di bawah  Lisensi Internasional Creative Commons Atribusi 4.0 .