PEMANFAATAN DATA MINING UNTUK KLASTERISASI POTENSI PRODUKSI BERAS DI KABUPATEN BLITAR DENGAN MENGGUNAKAN METODE FUZZY C-MEANS
Abstract
Abstract : Rice production plays an important role in people's lives, where rice is a staple food that is useful so that the body can do various activities because it has an energy source. As an area included as a national rice barn, Blitar Regency has a target to increase rice production every year. Increasing the amount of rice production in Blitar must be increased to keep up with the growing population. In order to maintain and meet the needs of rice, the Blitar District government needs a method to classify rice production potential in Blitar District. The aim is to find out which areas in Blitar Regency have suboptimal rice production results. Thus the clustering technique that can be applied is the method with the Fuzzy C-Means Clustering algorithm. Using the Fuzzy C-Means method is expected to make it easier for the Blitar Regency government to classify agricultural products in Blitar Regency to find out which areas have high, medium and low rice production potential. The results of testing the Partition Coefficient validation value were 0.7695, thus the cluster quality was optimal.
Â
Keywords : Data Mining, Clustering, Fuzzy C-Means, Rice, Production, Partition CoefficientFull Text:
PDF (Bahasa Indonesia)References
Han, J. dan M. Kamber. 2006. Data Mining Concepts and Techniques Second Edition. San Francisco: Morgan Kaufmann.
Karim, MD. Ehsanul. 2011. Fuzzy C Means Clustering Using Pattern Recognition Concept, Method, Implementations. Lambert Academic Publishing, Germany.
Kusrini, Luthfi Taufuq Emha, 2009, Algoritma Data Mining, Penerbit Andi, Yogyakarta.
Kusumadewi, S. ET AL. 2006. Fuzzy Multi-Attribute Decision Making (FUZZY MADM). Graha Ilmu. Yogyakarta.
Kusumadewi, Sri dan Purnomo Hari. 2010, “Aplikasi Logika Fuzzyâ€, Cetakan Pertama, Graham Ilmu, Yogyakarta.
Miller, R.L. Dan Meiners E, R. 2000. Teori Mikroekonomi Intermediate, penerjemah Haris Munandar. PT. Raja Grafindo Persada, Jakarta
Santoso, Budi. 2007. Data Mining:Teknik Pemanfaatan data untuk keperluan bisnis, Yogyakarta : Graha Ilmu.
Tan, Pang-Ning, ET AL. 2006 Introduction to data mining. Boston: Pearson Addison Wesley.
Turban, E., DKK. 2005. Decision Support Systems and Intelligent Systems. Yogyakarta: Andi Offset.
Yogi Yusuf W., F. R. 2006. Penerapan Data Mining Dalam Penentuan Aturan Asosiasi Antar Jenis Item. Seminar Nasional Teknologi Informasi UII 2006. Yogyakarta.
Prasetyo, Eko. 2014. Data Mining Mengolah Data Menjadi informasi Menggunakan MATLAB. Yogyakarta: Andi Offset.
DOI: http://dx.doi.org/10.53567/spirit.v12i2.181
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Jurnal SPIRIT
Diindeks Oleh:
SPIRIT : Sarana Penunjang Informasi Terkini
Diterbitkan oleh Teknologi Informasi Institut Teknologi dan Bisnis Yadika Pasuruan
Alamat Redaksi: Jl. Bader No.9, Kwangsan, Kalirejo, Kec. Bangil, Pasuruan, Jawa Timur 67153
Telp/Fax: (0343) 742070 , Email : lppm@stmik-yadika.ac.id
Google Maps : Klik Disini
Karya ini dilisensikan di bawah Lisensi Internasional Creative Commons Atribusi 4.0 .